Patterns of Epistasis between Beneficial Mutations in an Antibiotic Resistance Gene
نویسندگان
چکیده
Understanding epistasis is central to biology. For instance, epistatic interactions determine the topography of the fitness landscape and affect the dynamics and determinism of adaptation. However, few empirical data are available, and comparing results is complicated by confounding variation in the system and the type of mutations used. Here, we take a systematic approach by quantifying epistasis in two sets of four beneficial mutations in the antibiotic resistance enzyme TEM-1 β-lactamase. Mutations in these sets have either large or small effects on cefotaxime resistance when present as single mutations. By quantifying the epistasis and ruggedness in both landscapes, we find two general patterns. First, resistance is maximal for combinations of two mutations in both fitness landscapes and declines when more mutations are added due to abundant sign epistasis and a pattern of diminishing returns with genotype resistance. Second, large-effect mutations interact more strongly than small-effect mutations, suggesting that the effect size of mutations may be an organizing principle in understanding patterns of epistasis. By fitting the data to simple phenotype resistance models, we show that this pattern may be explained by the nonlinear dependence of resistance on enzyme stability and an unknown phenotype when mutations have antagonistically pleiotropic effects. The comparison to a previously published set of mutations in the same gene with a joint benefit further shows that the enzyme's fitness landscape is locally rugged but does contain adaptive pathways that lead to high resistance.
منابع مشابه
Positive Epistasis Drives the Acquisition of Multidrug Resistance
The evolution of multiple antibiotic resistance is an increasing global problem. Resistance mutations are known to impair fitness, and the evolution of resistance to multiple drugs depends both on their costs individually and on how they interact--epistasis. Information on the level of epistasis between antibiotic resistance mutations is of key importance to understanding epistasis amongst dele...
متن کاملMultiple Resistance at No Cost: Rifampicin and Streptomycin a Dangerous Liaison in the Spread of Antibiotic Resistance
Evidence is mounting that epistasis is widespread among mutations. The cost of carrying two deleterious mutations, or the advantage of acquiring two beneficial alleles, is typically lower that the sum of their individual effects. Much less is known on epistasis between beneficial and deleterious mutations, even though this is key to the amount of genetic hitchhiking that may occur during evolut...
متن کاملDiminishing returns from beneficial mutations and pervasive epistasis shape the fitness landscape for rifampicin resistance in Pseudomonas aeruginosa.
Because adaptation depends upon the fixation of novel beneficial mutations, the fitness effects of beneficial mutations that are substituted by selection are key to our understanding of the process of adaptation. In this study, we experimentally investigated the fitness effects of beneficial mutations that are substituted when populations of the pathogenic bacterium Pseudomonas aeruginosa adapt...
متن کاملDetection of A2142C, A2142G, and A2143G Mutations in 23s rRNA Gene Conferring Resistance to Clarithromycin among Helicobacter pylori Isolates in Kerman, Iran
Background: Clarithromycin resistance in Helicbacter pylori has been found to be associated with point mutations in 23s rRNA gene leads to reduced affinity of the antibiotic to its ribosomal target or changing the site of methylation. The aim of this study was to determine the most important point mutations in 23s rRNA gene in H. pylori that are closely related to clarith-romycin resistance amo...
متن کاملPervasive Sign Epistasis between Conjugative Plasmids and Drug-Resistance Chromosomal Mutations
Multidrug-resistant bacteria arise mostly by the accumulation of plasmids and chromosomal mutations. Typically, these resistant determinants are costly to the bacterial cell. Yet, recently, it has been found that, in Escherichia coli bacterial cells, a mutation conferring resistance to an antibiotic can be advantageous to the bacterial cell if another antibiotic-resistance mutation is already p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 30 شماره
صفحات -
تاریخ انتشار 2013